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ABSTRACT

The framework of feedback analysis is used to explore the controls on the shape of the probability dis-

tribution of global mean surface temperature response to climate forcing. It is shown that ocean heat uptake,

which delays and damps the temperature rise, can be represented as a transient negative feedback. This

transient negative feedback causes the transient climate change to have a narrower probability distribution

than that of the equilibrium climate response (the climate sensitivity). In this sense, climate change is much

more predictable than climate sensitivity. The width of the distribution grows gradually over time, a conse-

quence of which is that the larger the climate change being contemplated, the greater the uncertainty is about

when that change will be realized. Another consequence of this slow growth is that further efforts to constrain

climate sensitivity will be of very limited value for climate projections on societally relevant time scales.

Finally, it is demonstrated that the effect on climate predictability of reducing uncertainty in the atmospheric

feedbacks is greater than the effect of reducing uncertainty in ocean feedbacks by the same proportion.

However, at least at the global scale, the total impact of uncertainty in climate feedbacks is dwarfed by the

impact of uncertainty in climate forcing, which in turn is contingent on choices made about future anthro-

pogenic emissions.

1. Introduction

Projections of future climate changes are inherently

probabilistic, because of the many uncertainties sur-

rounding choices of climate parameters, uncertainties in

the underlying physical processes and future emissions,

and because the climate system is highly complex. On

the other hand, such projections are now recognized as

essential tools for planners at all levels in our society, as

the global temperature rises and approaches levels that

cannot be reversed in the next few centuries. While the

projections are usually made on the basis of highly so-

phisticated and expensive numerical models, we present

here a much simpler set of tools that provides under-

standing and estimation of uncertainties in these pro-

jections.

Climate sensitivity is defined as the equilibrium response

of the global- and annual-mean surface air temperature to

a doubling of carbon dioxide over preindustrial values

(e.g., Solomon et al. 2007, hereafter S07), and has been a

standard metric via which to compare different estimates

of climate change ever since the initial estimates of

Arhennius (1896). From a climate modeling perspective,

determining the envelope of uncertainty in climate

sensitivity requires understanding how uncertainty in

the representations of physical processes in general

circulation models (GCMs) translates into the uncer-

tainty in the models’ response. Roe and Baker (2007,

hereafter RB07) investigated this question using the

framework of feedback analysis (e.g., Maxwell 1867;

Cess 1975; Hansen et al. 1984; Schlesinger 1985; Roe

2009). The net effect of atmospheric feedbacks is that

the climate system acts as a strong amplifier of external

radiative forcing. RB07 showed that one consequence of

this amplification is that a symmetric distribution of

uncertainty in feedbacks leads to a strongly skewed

distribution of uncertainty in climate sensitivity. For a

step increase in radiative forcing, DRF 5 constant and a

Gaussian-shaped distribution of uncertainty in feed-

backs characterized by a mean f and standard deviation

sf, RB07 showed the equilibrium probability density

function (PDF) of the climate sensitivity, or global mean

surface temperature T, is given by
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where T0 [ l0DRF; l0 ’ 0.3 K (W m22)21 (e.g., Hansen

et al. 1984).

Here h(T, ‘) is shown as the dark area along the or-

dinate in Fig. 1 for the Gaussian distribution of feed-

backs shown in the dark area along the abscissa

( f 5 0.65; sf 5 0.13). This shape is consistent with re-

sults from multiensemble GCM studies as well as a va-

riety of observationally based estimates. The lighter

curves, to be discussed later, show the same distributions

for f 5 0.5, sf 5 0.13.

RB07 also showed that for the larger f the strong

skewing of the probability distribution toward high cli-

mate sensitivities means that estimates of the likelihood

of climate sensitivity exceeding the central range of the

S07 estimate of 28–4.58C are not sensitive to the uncer-

tainty in the climate feedbacks. In other words, reducing

uncertainty in model parameterizations does not help

very much in constraining the fat tail of high climate

sensitivity estimates.

By definition, climate sensitivity is a measure of

equilibrium climate change. As several studies have

shown, the adjustment of the deep ocean actually takes

several centuries or more to come into equilibrium (e.g.,

Hoffert et al. 1980; Hansen et al. 1985; Wigley and

Schlesinger 1985; Allen and Frame 2007). This time scale

is only weakly constrained because the processes of ocean

adjustment remain poorly known. Importantly though,

the higher the climate sensitivity, the longer the ad-

justment time and so the fat tail of the PDF of climate

response grows only slowly with time (e.g., Hansen et al.

1985; Wigley and Schlesinger 1985). As pointed out by

Frame et al. (2006) and Allen and Frame (2007), this

long adjustment time calls into question the value of

better constraining climate sensitivity in making climate

projections that inform climate policy choices over the

coming decades and centuries.

In this study we extend the investigation of RB07 to

the time-dependent evolution of the PDF of the plane-

tary mean surface temperature under the action of

anthropogenic radiative forcing. Our goal is to identify

general principles governing the evolving shape of the

function hT(T, t), which we define as the probability

density that the global mean surface temperature

anomaly has value T at time t after the initiation of the

radiative forcing. We demonstrate that, as in the case of

equilibrium climate sensitivity, the transient response of

the system can be cleanly characterized in terms of cli-

mate feedbacks. The uptake of heat by the deep ocean

can be interpreted as a transient negative feedback.

With this perspective, the central questions of RB07 can

be addressed for the transient case. First, how does the

uncertainty in climate feedbacks translate into uncer-

tainty in the transient climate reponse? Second, how

does a reduction of uncertainty in model parameters (or

feedbacks) translate into uncertainty in the system re-

sponse T(t)? Our work complements previous investi-

gations of uncertainty in climate predictions (e.g.,

Wigley and Raper 2001; Frame et al. 2005; Knutti et al.

2005) in that we focus on general and qualitative fea-

tures of the probability distributions of predicted pa-

rameters, rather than on optimizing a quantitative

constraint on their values.

To make projections of global mean surface temper-

ature over the next few centuries, we must account for

heat buried in the oceans. Imposition of net radiative

forcing from above warms the upper ocean, which loses

heat to the vast ocean below. This heat loss reduces the

rate of warming of the ocean surface. To examine the

time-dependent evolution of the PDF of the surface

temperature in this case, we adopt a one-dimensional

model of the global surface heat balance, similar in form

to previous studies (Wigley and Schlesinger 1985; Wigley

FIG. 1. Illustration of the relationships between feedback factor f

and climate sensitivity T for step function forcing. The assumed

magnitude and spread in the feedback factors in the dark shading

are typical for GCM integrations (e.g., Colman 2003; Soden and

Held 2006), and lead to a strongly skewed distribution of climate

sensitivity. The dark dashed lines show the mean and 95% bounds.

The lighter shading and lines illustrate how the PDF of climate

sensitivity changes when the mean feedback is displaced by 20.15:

the PDF of the climate response is much more concentrated

around the mean value when the negative feedback is added.
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and Raper 1990; Lindzen and Giannitsis 1998). We ini-

tially assume a global ocean under the action of step

function forcing. Modifications resulting from time-

dependent forcing and the inclusion of land–sea surface

differences are discussed in later sections. We calculate

the evolution of T(t) for fixed values of the input pa-

rameters of the model and then we find the shape of the

PDF, hT(T, t), that is created by uncertainties in these

input parameters and/or uncertainty in the radiative

forcing. We will show that a few general ideas can guide

predictions of this time-dependent shape, and in par-

ticular the evolution of its high temperature tail.

2. The ocean model

In our model the ocean has a simple one-dimensional

structure, shown in Fig. 2: at the surface a well-mixed

layer of depth h, density r, specific heat Cp, and thermal

conductivity k(W m21 K) exchanges energy with the

atmosphere and loses heat to the ocean below. Vertical

heat transport throughout the ocean is represented by a

diffusivity x(m2 s21) and an upwelling velocity w, both

considered constant with depth and time.

Thus, assuming a global ocean, our energy balance

model consists of equations for T(t), the mean time-

dependent mixed layer temperature anomaly (depar-

ture from its value at time t 5 0), and Tth(z, t), the mean

time-dependent temperature anomaly at depth z below

the mixed layer in the deep ocean.

The mixed layer temperature obeys the following

equation:

rC
p
h

dT

dt
1

T(1� f
a
)

l
0

� k
›T

th

›z z50
5 DR

F
(t).

��� (2)

Here DRF(t) represents the downward radiative flux

anomaly at the top of the atmosphere, and fa is the sum

of atmospheric and surface feedback factors (e.g.,

albedo and cloud feedbacks).

For earlier derivations of Eq. (2) and discussion of the

feedback factors see RB07; Roe 2009, and references

therein. The term with k is the heat loss from the mixed

layer to the cooler water below.

The temperature in the deep ocean obeys the following

equation:

›T
th

›t
5 x

›2T
th

›z2
� w

›T
th

›z
. (3)

Here w , 0; it is the upwelling velocity, so that if the

ocean temperature decreases with z (distance below the

surface), the last term on the rhs of (3) is negative.

Equations (2) and (3) nondimensionalize to.

X
dT

dt̂
1 T(1� f

a
)� f

o

›T
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›ẑ
j
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›2T
th

›ẑ2
�

›T
th

›ẑ
, (5)

where X [ t1/t0, where t1 [ rCphl0; t0 [ 4x/w2, and

fo [ rCpl0w; t̂ [ t/t0; ẑ [ z/D; D [ 2x/w. Thus, the

parameters X, fa, and fo determine the solution. Note

that fo is negative. Table 1 shows that for typical values

of the physical parameters, t1 ; 3 yr, t0 ; 2500 yr, fo ;

20.16, and X ; 0.0039.

In this analytic model the ocean depth is infinite; as we

will show, this simplification does not substantially im-

pact the calculated surface temperature evolution or its

PDF for several centuries and enables an analytic solu-

tion to (2) and (3), given in the appendix. The boundary

conditions at upper and lower boundaries are Tth(0, t) 5

T(t) and Tth(‘, t) 5 0.

The system behavior is most clearly illustrated by the

response to a step function in forcing for fixed values of

the input parameters. Figure 3 shows the solution for the

three terms on the left-hand side of (2) whose non-

dimensional equivalents are obvious in (4). The rate of

change of mixed layer temperatures is initially large but

then quickly declines to small values, consistent with the

small value of X compared to the other nondimensional

numbers. As will be seen however, this small residual of

gradual warming is crucial for the subsequent evolution

of the PDF over time. The step function in forcing is

predominantly balanced by the two other factors: the

heat driven down into the deep ocean, which declines

slowly over time as the temperature contrast between

the deep ocean and the mixed layer declines; and the

FIG. 2. Schematic illustration of the one-dimensional energy

balance model.
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outgoing longwave radiation (modified by the atmo-

spheric feedbacks), which increases slowly over time as

the surface temperature continues to increase.

The time-dependent solution: Comparison of
numerical and analytical results

Since we have assumed the ocean is of infinite depth,

our model overestimates the strength of the oceanic heat

loss at large times. To explore its range of validity we

compare the analytic solution to (4) and (5) with the

solution obtained from a numerical model.

Equations (2) and (3) can be readily solved numeri-

cally for fixed values of the system parameters for an

ocean bottom at a depth L and zero-flux boundary

condition at this ocean floor. We also include heat

transfer rCw[T 2 Tth(z 5 L)] directly from the surface

to the deepest ocean level, which emulates bottom water

formation bringing surface anomalies to depth (Hoffert

TABLE 1. Parameter values and ranges used in the numerical and analytical models and Monte Carlo simulations. The top four are

physical parameters and the lower four are derived variables for the analytical model. For Monte Carlo calculations, parameter values are

drawn from normal distributions, with the given standard deviations, except for implementing the following physical constraints: h, x, and

2w must all be positive; and fa must be less than 1. Note that here we have put k 5 rCx. Parameter uncertainties are based on those

reported in previous studies (Hoffert et al. 1980; Wigley and Schlesinger 1985; Lindzen and Giannitsis 1998; Raper et al. 2001; Colman

2003; Soden and Held 2006; Forest et al. 2002, 2006). Because ratios are taken and because of physical constraints, none of the parameters

in the lower half of the table are normally distributed—so the 61s values given are one-half of the parameter range in which 68% of the

values lie.

Parameter Symbol Mean value 61s

Atmospheric feedback factor fa 0.65 0.13

Mixed layer depth h 75 m 25 m

Upwelling rate w 21.3 3 1027 m s21 0.5 3 1027 m s21

Ocean diffusivity x 1.5 3 1024 m2 s21 0.5 3 1024 m2 s21

Mixed layer adjustment time t1 3.0 yr 1.0 yr

Diffusive adjustment time to 2500 yr 1200 yr

Ocean feedback factor fo 20.16 0.06

Ocean warming parameter X 0.0039 0.0026

(a)

(b)

(c)

(d)

FIG. 3. (a) The evolution of the mixed layer temperature in response to a 4 W m22 step

function forcing; (b),(c),(d) the evolution of three principal terms in the energy balance on the

left-hand side of (2). The sum of the three terms equals 4 W m22 at all times. The first term

decays quickly to near zero, so that the dominant balance is that between the slow variations of

the atmospheric adjustment and the heat driven into the deep ocean.
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et al. 1980). The numerical solution can be compared

with that of the analytical model with infinite ocean

depth. Since we are interested in the evolution of the

PDF shape, we perform this comparison for 1000 Monte

Carlo calculations, varying the value of the atmospheric

feedback factor fa, assuming its uncertainty is governed

by a Gaussian distribution with parameters given by

Table 1 (as determined from literature surveys). We

initially only consider uncertainty in atmospheric feed-

backs, in order to cleanly isolate the role of the ocean

heat uptake. Later in the paper we also vary ocean pa-

rameters. Our assumption that the physical parameters

are normally distributed (except where prohibited on

physical grounds—for instance fa must be less than 1)

has only a minor impact on the detailed shape of the

resulting PDF of surface temperature, and no impact on

the basic properties, trends, and sensitivities of this

shape, which are our focus here.

A comparison of the numerical solution with L 5

4 km to the analytical solution with L / ‘ is shown in

Fig. 4. The analytical and numerical solutions of the

PDF are almost identical for the first 500 years, dem-

onstrating that the influence of ocean bottom has not yet

affected the evolution of the surface temperature. It is

also clear that the full range of climate sensitivity does

not come close to being realized for a very long time. In

this sense transient climate change is much more pre-

dictable than climate sensitivity.

There are three time scales evident in Fig. 4: a fast

time scale of the adjustment of the mixed layer, t1; a

medium time scale of the advective–diffusive adjust-

ment t0, which can be interpreted as the ratio of the

thermal reservoir of the deep ocean contained in one

diffusive length scale divided by the rate of upwelling of

heat; and last, a long time scale, ultimately the advective–

diffusive filling of the entire deep ocean. The physical

processes involved in the ultimate adjustment of the deep

ocean are poorly known, and our model is not intended to

represent them accurately. Nonetheless, we see that

(i) over the first few centuries, the agreement between the

numerical and analytical solutions means we can proceed

using the analytical model to explore the dependency of

the solution on model parameters, making use of the

speed of computations this model provides; and (ii) the

equilibrium response, and hence the equilibrium distri-

bution of climate sensitivity, is not an issue of concern

for policymakers.

3. Analysis: Ocean heat uptake as a transient
negative feedback

Although the equilibrium (i.e., infinite time) solution

for our simple analytical model is nonphysical, it is in-

structive to examine its behavior as we begin our in-

vestigation of hT(T, t). From the appendix we find for

fixed fa, fo that

T(‘) [ T
‘

5
T

0

(1� f
a
� f

o
)

,

T
th

(z, ‘) 5 T
‘

. (6)

For this equilibrium solution, then, the oceanic heat

uptake indeed behaves like a negative feedback of

strength fo. For the standard parameters in Table 1,

fo ’ 20.15. Therefore the equilibrium PDF for the

model would have the shape given by Eq. (1), with

f 5 fa 1 fo ’ 0.5 and sf the variance in the total feed-

back. The resulting distributions are shown in Fig. 1 in

light colors: the addition of a negative feedback moves

the PDF further from the limit of f / 1, reducing the

skewing tendency on the temperature response. Proba-

bilities are therefore concentrated more nearly about

the mean (and weaker) temperature response. This re-

sult can be understood physically: the effect of the ra-

diative forcing on the mixed layer is damped by the

heat that is taken up by the deep ocean. The greater the

surface temperature change, the more heat is driven into

FIG. 4. The evolution of the transient climate change to a

4 W m22 step function forcing. The figure shows the comparison

between the solutions from the analytical model Eqs. (2) and (3)

with semi-infinite ocean abyss (light gray), and the numerical model

with an ocean floor at 4 km including the transport of warm surface

water to the ocean floor (dark gray; see the text). (left) The evo-

lution over the first 10 000 yr and (right) the equilibrium response

(i.e., the limit of t / ‘, i.e., the climate sensitivity distribution). The

lines show the mean solution based on standard parameters ( fa 5

0.65, fo 5 20.15), and the shading shows 95% confidence interval

based on 1000-member ensemble using sf 5 0.13 with no variation

of ocean parameters. The first 500 yr of the climate evolution in the

analytical model are nearly identical to the numerical model.
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the deep ocean, and the greater degree to which the

effect of the radiative forcing is damped. Thus, this ef-

fect of the ocean heat uptake is similar to that of a

negative feedback. The equivalence of atmospheric

feedbacks and ocean heat uptake was also explored by

Gregory and Forster (2008), who invoked the concept of

a ‘‘climate resistance’’ that allowed for a direct com-

parison of the two factors.

We now show that, on the century time scale, the

impact of heat storage in the ocean on the surface

temperature (and hence on its PDF) is also very similar

to that of a transient negative feedback, delaying the

warming of the mixed layer. As in Fig. 4, we run Monte

Carlo simulations of the analytic solutions to our model

Eqs. (4) and (5), again varying the value of the atmo-

spheric feedback factor fa, and using the standard values

of fo and X in Table 1. Figure 5a shows the evolution of

hT (T, t) over the first 500 years after the step function

increase in forcing, calculated from 10 000 Monte Carlo

calculations. Within approximately 200 yr the PDF

asymptotes to the equilibrium PDF expected given the

uncertainty in the atmospheric feedbacks, modified by

the inclusion of the negative feedback due to the ocean

heat uptake [i.e., (1) with f 5 fa 1 fo]. The same is of

course true for the cumulative distribution function

p
cum

(T
c
, t) [

Ð ‘

Tc
h

T
(T , t) dT, shown in Fig. 5b.

a. Quantifying the transient ocean feedback

Figure 5a shows that even during the first 100 years of

the transient climate evolution the PDF hT(T, t) is

skewed, and similar in functional form to the equilib-

rium climate sensitivity PDF [(i.e., (1) with total feed-

back f 5 fa 1 fo]. Moreover, as shown in Fig. 3, the rate

of heat uptake of the ocean is large initially, but di-

minishes rapidly with time. These two observations

suggest that the ocean heat uptake can be characterized

as a negative feedback that is initially very strong, that

decreases over the medium term (i.e., several hundred

years) to that given by fo, and ultimately diminishes to

zero as true equilibrium is reached.

To quantify this behavior, at each time step in the

integration we calculate the probability density and

temperature at the mode of the evolving PDFs in Fig. 5a,

and use (1) to determine the value of f and sf of the

equilibrium PDF that would match that mode. We then

calculated the rms error between the actual PDF at

that time with the equilibrium PDF that the matched f

and sf would generate. These calculations are shown

in Fig. 6. To a high degree of accuracy the evolving

PDF can be well characterized by (1) with an effec-

tive negative ocean feedback that is strong initially,

and diminishes over the medium term to its analytical

value. The implied spread of uncertainty in the feed-

backs (i.e., sf) stays approximately constant with time

(Fig. 6c).

b. The conservation equation for hT(T, t) and the
growth of the fat tail

Our goal in this paper is to describe the shape of

hT(T, t) as it evolves over the next centuries, as shown in

Figs. 4–6. Physical understanding of this evolution is

aided by noting that ht(T, t) obeys a conservation

equation analogous to that of the density in a com-

pressible fluid in which there are no diffusive processes:

FIG. 5. The evolution of the (a) PDF hT (T, t) and (b) the CDF pcum(Tc, t), the probability that T $ Tc at time t. We assume an

aquaplanet subject to DRf 5 4 W m22 step function forcing. The histograms were generated from 10 000 Monte Carlo calculations of the

analytical model, in which the value of fa was drawn from a normal distribution governed by values in Table 1. Also shown are the equilibrium

climate sensitivity probability and cumulative probability distributions calculated from (1), for the atmospheric feedbacks alone (i.e., f 5 fa),

and also including the effective negative feedback of the ocean heat uptake (i.e., f 5 fa 1 fo), including the same uncertainty in fa as in Fig. 1.

By about 500 yr, the calculated distributions closely match the expected equilibrium distribution of the analytical model [i.e., (1)].
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›h
T

(T, t)

›t
5�

›[h
T

(T, t) _T]

›T
, (7)

where _T is the average rate of warming of the climate

states close to a given T. As such, _T can be thought of as

the mass-weighted warming ‘‘velocity’’ of a given point

on the PDF. Therefore hT 3 _T is a density of proba-

bilities multiplied by a velocity of probabilities, and so is

equal to the flux of probabilities from lower to higher

temperatures. Figure 7 shows the terms going into this

probability flux. The right-hand side of (7) is the con-

vergence of that flux. The shape of the PDF changes with

time, as the probability density increases where this

convergence is positive and decreases where it is nega-

tive.

The rate of increase with time of the cumulative

probability that T exceeds any given Tc is a measure of

the growth of the tail, and can be found by integrating

(7) from a particular value of T, T 5 Tc, to ‘. Taking

account the fact that hT(T, t) / 0 as T / ‘ gives

›p
cum

(T
c
, t)

›t
5 h

T
(T

c
, t) _Tj

T5T
c
. (8)

A measure of the rate of spreading of the high temperature

tail of the PDF is Uspread(t) [ _T(t)pcum50.5 � _T(t)pcum50.05.

As shown in Figs. 4, 5, and 7b, Uspread(t) is large in the

first decades and decreases thereafter as the PDF ap-

proaches the equilibrium shape [i.e., that given by (1)]

corresponding to total feedback f 5 fa 1 fo.

4. Some policy-related issues

Our simple framework can provide insight into sev-

eral issues of current interest to climate policy makers.

The shape and evolution of the PDF of the climate

response is a critical factor in economic planning and

of great current interest (e.g., Weitzman 2009). We

focus here on the following:

1) How well can we predict when the temperature will

reach a given value?

2) Which parameters dominate the uncertainty? Does it

help more to reduce uncertainties in the atmospheric

feedbacks or to reduce those related to the ocean

feedback?

3) How does uncertainty in climate forcing affect pre-

dictions of climate change?

FIG. 6. (a) The rms difference between the evolving PDF and the theoretical distribution for

which the f and sf in (1) matches the mode of the evolving PDF. Errors are only a few percent

after ;20 yr. (b) The effective ocean feedback factor, f
o

[ f � f
a
, found by matching the

mode of the evolving PDF with (1). The matched value of fo converges to its analytical value of

20.16 after about 100 yr. (c) The effective spread in feedback uncertainty sf found by this

procedure. The matched value of sf stays close to 0.13, the value used in generating the

climate PDFs. In (a)–(c), it is shown that, to a high degree of accuracy, the evolving PDF can be

well characterized by the theoretical distribution [i.e., (1)] with an effective negative ocean

feedback that is strong initially, and diminshes over the medium term to its analytical value.

PDFs based on 10 000 Monte Carlo calculations.
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4) How does the choice of emissions scenario affect the

probability of reaching ‘‘dangerous’’ climate change?

And how does uncertainty in anticipated emissions

compare with uncertainty in climate parameters? In

other words, what is our best strategy to improve

predictability of avoiding a dangerous climate

change?

To study these practical problems in climate prediction

we must make a realistic approximation to expected

forcing. The step function approximation for the radia-

tive forcing has provided a simple tool with which to

investigate the ways that uncertainties in physical factors

impact the time dependence of the PDF of the surface

temperature. However, in reality the forcing is expected

to rise steadily with time for the next decades, and we

now examine the evolution of the temperature PDF for

this case.

The simplest approximation is that the forcing grows

linearly with time. We first predict some features of the

PDF of surface temperature that will result from a

known DRF(t) 5 VFt; in a later section we consider the

impacts of uncertainty in the parameter VF. Figures 8a,b

show the PDF and cumulative distribution function

(CDF) of the climate response to a ramp forcing, given

uncertainty in fa.

Equations (7) and (8) characterize the evolution of

the PDF and CDF of temperature under ramp forcing.

The terms in the probability flux are shown in Fig. 9,

and Uspread(t) can be diagnosed from Figs. 9a and 9b.

In contrast to the step function case, this spreading

rate now increases with time, due to the acceleration

of the high temperature tail. As before, because of

the smallness of the parameter X, the explicit time-

dependent term in (2) is small compared with the other

terms so that for any VF the sum of the second and

third terms in this equation should be approximately

linear in time.

A rough approximation to the temperature evolution

on a trajectory with fixed (fa, fo) after the first 50 years

or so is T(t) ’ l0VFt/(1 2 fa 2 fo) [ l0VFt/(1 2 f) (see

also Gregory and Forster 2008). Therefore, the relative

uncertainty in temperature associated with relative un-

certainty in feedback df /f is dT(t)/T(t) ’ df (1� f )�1,

independent of VF. For our standard parameters, this

relative error is approximately 0.3.

a. How well can we predict when the temperature
will reach a given value?

From (7) it follows that the PDF of the time tc it takes

to reach a given value T 5 Tc is

FIG. 7. The time evolution of the terms in the probability flux equation [i.e., (7)], subject to DRf 5 4 W m22 step

function forcing: (a) hT (T, t); (b) the average rate of warming as a function of T; (c) the product of (a) and (b), which

equals the flux of probability as a function of T. This slow flux of probabilities to higher values of T characterizes the

growth of the fat tail over time. Based on 10 000 Monte Carlo calculations, assuming uncertainty in fa is governed by

a Gaussian distribution based on parameters in Table 1. No uncertainty in ocean parameters is included.
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This PDF is shown for ramp forcing in Figure 10. It

broadens as the threshold temperature increases. Thus,

predicating a policy choice on a threshold of Tc $ 28C

must take into account the considerable uncertainty in

the time that this temperature (or any given tempera-

ture) will be reached, even if there is no uncertainty in

the forcing.

b. Which model parameters dominate the
uncertainty?

RB07 showed that the fat tail of the equilibrium PDF

of climate sensitivity is relatively insensitive to a

FIG. 8. (a) Dark shading is for the 95% bounds on the time evolution of the surface temperature for a ramp forcing: DRF (t) 5 VF t, where

VF 5 4 W m22 (100 yr)21; light shading, as for dark shading but including a 25% standard deviation in uncertainty in VF. As explained in the

text, after an initial adjustment period, trajectories grow approximately linearly with time. (b) As in (a), but showing the time evolution of the

CDF for case with no uncertainty in forcing. The smooth curves are the same as those in Fig. 5b, and are included for comparison. Curves

based on 10 000 Monte Carlo calculations, assuming uncertainty in fa is governed by a Gaussian distribution based on parameters in Table 1.

FIG. 9. Terms in the probability flux for ramp forcing; same calculations as in Fig. 8. The continuous increase in

forcing produces a steady flux of probabilities toward higher temperatures, and the distribution broadens with time,

as growth at high temperatures is faster than at low temperatures. Compare with Fig. 7, but note the different axis

scales.
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reduction of uncertainty in the feedbacks. The analytical

model developed in this study allows very efficient

Monte Carlo estimates of this reduction for the evolving

PDF. We first perform simulations in which model pa-

rameters fa, h, x, and w are assumed to vary randomly

within normal distributions governed by Table 1. No

great effort was made to optimize them to the best

possible values—the purpose of these calculations is

illustrative.

Figure 11 shows the evolving PDF of the response to

a linear ramp forcing of 4 W m22 100 yr21, estimated

from 10 000 Monte Carlo calculations, and for various

combinations of parameter uncertainty. With all un-

certainties included the 95% confidence interval at 200 yr

is approximately 28–58C. Since the total uncertainty is

the sum of the uncertainties in the atmospheric and the

oceanic parameters, reducing the uncertainty in fo by a

given amount has the same impact on the PDF as does

the same reduction of uncertainty in fa by the same

amount even though f
o

, f
a
. However, because of the

differences in magnitudes of the two means, reducing so

and sa by the same amount requires a much greater

reduction in so/fo than in sa/fa.

The presence of the negative ocean feedback in the

transient evolution of the system means that the total

feedback (i.e., fa 1 fo) is shifted away from the f 5

1 limit. Consequently the effect of the 1/(1 2 f)

stretching that creates the fat tail for large climate re-

sponses is significantly reduced, and probabilities are

much more concentrated around the mean value (Fig.

1). Hence, in contrast to the equilibrium climate sen-

sitivity results of RB07, a reduction of uncertainty

in the atmospheric feedbacks does have a significant

effect on reducing uncertainty in the evolving climate

response. It is also worth noting that, if the uncer-

tainty in different model parameters are not formally

independent of each other, reduction of the uncer-

tainty in one parameter may lead to a reduction uncer-

tainty in other parameters when the model is evaluated

against observations (Knutti et al. 2002, 2003; Forest

et al. 2002).

c. How does uncertainty in climate forcing affect
projections of climate change?

Heretofore we have assumed the forcing is perfectly

known. However, there are substantial uncertainties

in forcing at the present day, and also uncertainties in

what future emissions and the consequent climate

forcing will be (e.g., S07). Although it is beyond the

scope of this paper to review these uncertainties and

their likely evolution, we can roughly estimate their

impacts on the evolving PDF of surface temperature.

Here we assume the mean forcing is a known linear

function of time, DRF(t), with symmetrically distributed

uncertainty sR about this mean, where sr�DRF(t). In a

later section we explore the impacts on climate pre-

dictability of the uncertainty associated with choice

of mean forcing DRF(t). The sR is independent of time,

of temperature, and of the various feedbacks in this

exercise.

FIG. 10. The probability per unit time that the temperature

reaches the indicated thresholds, for ramp forcing: DRF (t) 5 VF t

where VF 5 4 W m22 (100 yr)21. Here only uncertainties in fa have

been considered. While the time to reach lower thresholds can be

estimated with some confidence, the time to reach higher thresh-

olds is highly uncertain.

FIG. 11. The effect of reducing uncertainty in the model pa-

rameters on the time-dependent PDF of the climate response

(ramp forcing). The shaded regions are 95% confidence intervals

estimated from 10 000 Monte Carlo calculations. The figure shows

that it is much more effective to reduce the relative uncertainty in

atmospheric feedback factors than to reduce relative uncertainty in

ocean heat uptake parameters. The box and whisker plots on the

right show the mean, the interquartile range, and the extreme limits

of the 10 000 calculations. The means and standard deviations of

parameters are given in Table 1.
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1) IMPACT ON THE EQUILIBRIUM CLIMATE

CHANGE

It is instructive to examine the relative impacts of un-

certainties in climate forcing and in climate feedbacks

on the equilibrium response to step function forcing, and

then to apply those results to the case of time-dependent

forcing. For the former we have hT(T) dT 5 hf(fa) dfa 3

hR(DRF)d(DRF), where hf and hR are the PDFs of fa and

DRF, respectively. Using the fact that T 5 l0DRF/(1 2 fa),

and integrating over DRf from zero to infinity gives

h
T

(T) 5 l
0

ð‘

0

h
f

1�
l

0
DR

F

T

� �
h

R
(DR

F
)
DR

T2
d(DR

F
).

(10)

For a normal distribution of uncertainty in forcing, with

mean value DRF 5 4 W m�2 and sR 5 1 W m22, the

PDF of the climate response is shown in Fig. 12. The

uncertainty in forcing does very little to the likelihood of

large temperature increases since the equilibrium PDF

varies little with temperature in that regime. It does,

however, redistribute likelihood away from the center of

the PDF toward lower climate responses. Thus, uncer-

tainty in forcing is more important than uncertainty in

feedbacks at lower temperatures and less important at

higher temperatures. For the values chosen in this study,

the crossover in relative importance is near T ; 28C,

which can be established from (10).

2) IMPACT ON THE TRANSIENT CLIMATE CHANGE

Now we assume ramp forcing with the mean value

DRF(t) 5 VFt, whereVF 5 4 W m�2 100 yr�1, and add

in an uncertainty in VF of s
VF

5 0.25V
F

, which ap-

proximately agrees with present estimates of the forcing

uncertainty (S07). A comparison of the light and dark

shading in Fig. 8a shows the impact of forcing uncer-

tainty on the evolving response. Contrary to the case of

the equilibrium PDF to a step forcing shown above,

there is now some significant effect of forcing uncer-

tainty at high climate responses. For time-dependent

forcing, the small value of the nondimensional param-

eter X in (4) leads to an approximately linear relation-

ship between forcing and response; lower forcing

produces more gradual warming. As in the case of the

equilibrium response to step forcing, the impact of

symmetric forcing uncertainty is to add slightly greater

probability of low temperature response than high cli-

mate response, leading to a less skewed PDF with the

forcing uncertainty than without.

d. How does the choice of emissions scenario affect
the probability of reaching dangerous climate
change?

In this section we consider those factors determining

the probability that the maximum global mean tem-

perature will reach (or remain less than) a preset

threshold, if we manage to eventually reduce forcing

toward preindustrial levels. We assume the forcing is a

quadratic function of time, characterized by two pa-

rameters: a maximum forcing and the time taken to

reach that maximum. As a proxy for climate forcing, we

assume that the concentration of CO2 is related to the

radiative forcing DRf via the relationship DR 5 5.35 3

loge(CO2/280) W m22, where CO2 is measured in ppmv

(Ramaswamy et al. 2001). Thus, whereas stabilization of

forcing at some level leads to the eventual full PDF

characterized by (1), including the full width of the fat

tail, we now consider scenarios in which forcing (CO2

concentrations) comes back down toward preindustrial.

In these cases the fat tail of the equilibrium PDF does

not have time to develop in the climate projections, and

this causes a striking reduction in the risk of experi-

encing the extreme climate responses, a risk that cannot

be ruled out as an ultimate equilibrium response to a

stabilization scenario.

Figure 13 shows some examples of the forcing sce-

narios and the climate response to them, assuming the

standard set of parameters. The maximum temperature

is reached between 20 and 40 yr after the maximum in

concentrations, depending on the rate of decline in the

concentrations. Note that this figure is consistent with

the arguments of Cox and Stephenson (2007) who point

out that the uncertainty in emissions becomes more

important than uncertainty in processes and parameters.

FIG. 12. The effect of small symmetric uncertainty in forcing on

the equilibrium climate response. The black curve shows the PDF

of equilibrium climate response for an assumed steady forcing of

DRF 5 4 W m22. The gray curve shows the effect of adding a

normally distributed uncertainty in forcing with standard deviation

of 1 W m22: likelihoods are redistributed away from the center of

the distribution toward lower climate responses (gray curve).
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We consider a wide range of CO2-equivalent con-

centration scenarios spanning maximum concentrations

of between 280 (i.e., preindustrial levels) and 1100

ppmv, and spanning time-to-maximum of between 10

and 500 yr.

We emphasize that we do not consider the modeled

climate responses to be optimized climate projections

for the given scenarios. The purpose of the calculations

is twofold: first to show the ability of the model frame-

work to make reasonable probabilistic forecasts for differ-

ent concentration scenarios; and second, to explore how

reducing uncertainty in model parameters changes the

projected PDF of the climate response to different emis-

sions scenarios. We note also that for these simulat-

ions we have assumed an aquaplanet, so the temperatures

refer to the ocean mixed layer temperature on such a

planet. We discuss the impact of including a land fraction

below.

Figures 14a,b show the 5% and 95% bounds on the

PDF of the maximum temperature reached for different

parabolic concentration scenarios, examples of which

are shown in Fig. 13. The asymmetry of the PDFs is

reflected in Fig. 14, in that the upper 95% bound is more

sensitive to variations in the maximum concentration

than is the lower bound. Figures 14c,d show the effect of

halving uncertainty in all model parameters on the 5%

and 95% bounds of the climate projections. The range of

climate projections for any given concentration scenar-

ios narrows in response to the reduced uncertainty.

However the 95% bound on the maximum temperature

reached (i.e., Figs. 14a,c) is most sensitive to small

changes in the maximum concentration reached.

As a guide for future climate projections, in Fig. 14 we

have superimposed (arrows) the low, mid, and high

values of CO2-equivalent concentrations projected for

the year 2100 in S07. Assuming the concentrations de-

cline after 2100, the figure allows us to estimate the

bounds on the PDF of maximum temperature each of

these Intergovernmental Panel on Climate Change

(IPCC) scenarios would produce. The uncertainty in

concentration scenarios encompass approximately a

factor of 2 uncertainty in the climate response and

therefore, at this point in time, dominate over the pa-

rameter uncertainty in generating uncertainties in cli-

mate projections.

5. Limitations of our analysis

a. The impact of land and regional variations

As has been shown by several authors (e.g., North and

Coakley 1979; Wigley and Schlesinger 1985; Lindzen

and Giannitsis 1998), the impact of the land fraction of

the global surface on the evolving global surface tem-

perature can be approximated by replacing X by gX,

and fo by gfo in Eq. (4) for the mixed layer temperature,

where g varies between about 0.7–1.0, depending on

the strength of the land–ocean coupling assumed. The

global mean surface temperature is then an area-

weighted sum of the land temperature and this mixed layer

temperature. We can expect that the change X / gX

will not have much impact but the diminished magni-

tude of the effective oceanic feedback fo / gfo will

lessen the role of the ocean in holding back the surface

warming. The PDF of the evolving global surface tem-

perature is then peaked at slightly higher temperatures

than for the aquaplanet at all times, and the inclusion of

the land factor somewhat accelerates the growth of the

tail of the PDF (not shown).

It is important to appreciate that there are possibly

large local departures from the global picture presented

here. For instance, although the global feedback factor

for surface albedo is small compared to, for example,

that for water vapor (e.g., Hansen et al. 1984), the

presence or absence of sea ice may be the dominant

control on climate in the vicinity of the sea ice margin.

Another case in point is that, in contrast to our glo-

bally averaged model framework, ocean heat uptake is

a strongly regional phenomenon, and characteristic cli-

mate variability can be quite strongly affected in re-

gions where the presence of a deep, well-mixed column

of ocean water increases the effective thermal inertia

(e.g., Manabe and Stouffer 1996). Nonetheless the

ability of such simple models to emulate global mean

temperatures both in observations and in output from

coupled global climate models suggests that such re-

gional-scale effects do not overwhelm the global-scale

picture.

FIG. 13. Some examples of concentration trajectories (right axis),

and the transient climate change, found from the analytical model

(left axis), for the standard set of parameters in Table 1.
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b. Nonlinear feedbacks and missing feedbacks

For any given climate trajectory we assumed that the

feedbacks were constant. In fact some modeling studies

suggest some dependence of feedbacks on mean climate

state (e.g., Colman et al. 1997), though the results vary

widely: Watterson (2000) finds very little change in cli-

mate sensitivity with climate state; Senior and Mitchell

(2000) find the effective climate sensitivity increasing by

40% after 800 yr of a climate change scenario; and Boer

and Yu (2003) find a 10%–20% decrease in a similar

time frame. Note that these last two results are consis-

tent with an expectation from (1) that one would expect

larger changes for an increase in effective climate sen-

sitivity than for a decrease in climate sensitivity. We

have crudely emulated these results by imposing climate-

dependent feedback strength [i.e., fa 5 fa(T)], but over

the first few centuries, these changes cause only small

quantitative differences in the evolving PDF (not shown).

It should also be noted that we have left out some

other feedbacks, such as changes in the strength of the

thermohaline circulation (e.g., Wood et al. 2003) or the

carbon cycle (e.g., Torn and Harte 2006), which have

been suggested to be important. Simple characteriza-

tions of such feedbacks could readily be incorporated in

the framework presented here.

6. Conclusions

We have investigated controls on the shape of the

PDF of the global mean temperature response to cli-

mate forcing, as it evolves in time. In particular, we have

FIG. 14. (a) The 95% bound on the maximum surface temperature for a range of concentration scenarios. For each

scenario, the figure shows the temperature change that there is a 1-in-20 chance of exceeding. (b) The 5% lower

bound—that is, there is a 19-in-20 chance of exceeding the given temperature change. Uncertainties in the model

parameters follow the values given in Table 1. Together (a) and (b) bracket the 90% confidence interval. (c),(d) The

same calculations as (a),(b), but for a halving of uncertainty in all model parameters. The arrows show the range of

concentrations for the year 2100 considered by S07 (see the text). Uncertainties in future concentrations are the

dominant source of uncertainty in climate change projections. Both (a) and (b) are based on 10 000 Monte Carlo

calculations using the analytical model, for every concentration scenario.
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examined how uncertainties in physical feedbacks and

uncertainties in climate forcing combine to affect un-

certainty in the evolving climate response.

A principal result is that the ocean heat uptake can be

well characterized as a transient negative feedback that

operates out to at least few centuries. The effect of this

negative feedback is that the PDF of the transient cli-

mate change is much narrower and less skewed than the

PDF of the equilibrium climate response. In this sense,

transient climate change is much more predictable than

equilibrium climate sensitivity. Another result that

carries some important policy implications is that the

larger the temperature change that is being contem-

plated, the more uncertain is the timing of when that

temperature will be reached.

We also showed that as the transient ocean feedback

declines, the fat tail of probabilities of large climate

change grows exceedingly gradually, as the system

slowly trends toward equilibrium. The protracted de-

velopment of the fat tail can be represented as a flux of

probabilities that depends on the warming rate and the

probability density, both of which have very low values

in the tail. The fact that it takes so long for the full range

of possible climate states to be realized suggests that

further efforts to constrain the fat tail of equilibrium

climate sensitivity will be of very limited value for cli-

mate projections on societally relevant time scales.

For both the transient and equilibrium climate re-

sponse, introducing uncertainty in the forcing has the

effect of broadening the PDF of the climate response,

and also of making the PDF more symmetric, which

increases the probability of lower climate changes.

The combined atmosphere feedbacks (fa) are larger in

magnitude than the ocean heat uptake feedback ( fo).

Thus, to the extent that progress is possible toward re-

ducing uncertainty in climate response, reducing uncer-

tainty in atmospheric feedbacks by a given percentage

has a bigger impact than reducing uncertainty in ocean

feedbacks by the same percentage. However, and im-

portantly for future climate projections, the uncertainties

in climate feedbacks are dwarfed by the uncertainty in

future climate forcing, primarily due to uncertainty in

anthropogenic emissions (Fig. 14).

We have used a very basic model of the climate system.

However, we believe that the basic physical tendencies

evinced here will also apply in more sophisticated and

complete physical models of climate prediction. RB07

showed that (1) characterizes the behavior of full-physics

global climate models, and that it spans the full range of

climate sensitivities arising out of multithousand member

ensembles of climate model integrations. There is also no

doubt that the ocean heat uptake acts to buffer the re-

sponse of the surface temperature to climate forcing, and

the values of model parameters that we use are consistent

with previous studies that have been calibrated to match

observations. While considerable uncertainty surrounds

the processes governing the long-term adjustment of the

ocean, our results out to a few centuries are quite insen-

sitive to variations in the ocean heat uptake (e.g., Fig. 11).

Our results suggest that once feedback factors have

been determined, reasonable estimates of the evolving

PDF of future climate (at least as characterized by

global mean temperature) can be obtained without re-

course to large ensemble integrations of global climate

models. Such simple calculations are powerful and effi-

cient tools for exploring the climate response to differ-

ent scenarios of future anthropogenic climate forcing.
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APPENDIX

The Solution of Eqs. (4) and (5)

We assume that the nondimensional time-dependent

forcing can be expressed as a polynomial:

DR
F

(t̂ ) 5 �
i50

c
i
t̂

i
, (A1)

and that the forcings are sufficiently small that the resulting

temperatures are sums from the individual contributions:

T(t̂ ) 5 �
i

Ti
ml(t̂ ), (A2)

where Tml
i is the mixed layer for ramp forcing c

i
t̂

i

T
th

(ẑ, t̂ ) 5 �
i

Ti
th(ẑ, t̂ ). (A3)

Thus, the solutions for all forcings are defined by the

nondimensional parameters X, fa, and fo and the coef-

ficients ci.

a. The (A2) solution

Because of the linear nature of this model, the tem-

perature in the deep ocean is related to that of the mixed

layer by

T
th

(ẑ, t̂ ) 5

ð
T(t̂

0
)

ẑ

(t̂ � t̂
0
)1.5

exp �
[ẑ 1 4(t̂ � t̂

0
)2]

16(t̂ � t̂
0
)

( )
dt̂

0
.

(A4)
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b. The (A3) step function forcing

In the special case of step function forcing, (assuming

forcing due to doubling of CO2), c0 5 l0DRF(2 3 CO2),

ci 5 0, i 6¼ 0.

Using Laplace transform methods, it can easily be

shown that the solution is of the following form:

T0
ml(t̂ ) 5 c

0
(G[h 5 0, t̂ ] 1 I[r̂ 5�1, t̂ ]), (A5)

where

G[h, t̂ ] [
exp(ht̂ )

[hX 1 s 1 0.5f
o
(1 1 h)0.5]

, (A6)

s [ 1 2 fa 1 0.5fo, and

I[r̂, t̂ ] [�
ð‘

0

a0.5exp(�at̂ )

(r̂ 1 a) (a� r̂
1
) (a� r̂

2
)

da

5 p
1

(r̂
1
� r̂) (r̂

2
� r̂)

f [r̂, t̂ ]

�

1
1

(r̂
1
� r̂) (r̂

1
� r̂

2
)

f [r̂
1
, t̂ ]

1
1

(r̂
2
� r̂)(r̂

2
� r̂

1
)

f [r̂
2
, t̂ ]

�
,

where f [x, t̂ ]k [ ( fo/2pX2) exp(�t̂ )(�x)0.5 exp(�xt̂ )

erfc[(�xt̂ )0.5]. The nondimensional roots r̂
1
, r̂

2
are

c. The (A4) time-dependent forcing

The contribution of the forcing term cit̂
i

to the mixed

layer temperature is

Ti
ml(t̂ ) 5 c

i

›iG[h, t̂ ]

›hi h50
1

›iI[r̂, t̂ ]

›r̂i

����
����
r̂5�1

� �
. (A8)
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